HLA MHC Genetics
Genetic Epidemiology Evolution Biostatistics Homepage
GENDER EFFECT IN CANCER
M.Tevfik Dorak, MD PhD
Full
notes will appear very shortly (in June 2006)
Please update your bookmark: http://www.dorak.info/epi/gender.html
Automated
Medline Search for gender effect in cancer susceptibility using (cancer
susceptibility & sex factors)
Gender
and Health: WHO Technical paper (WHO/FRH/WHD/98.16)
Physiological
and Pharmacological Differences Between the Sexes
Disease Control Priorities Project > Disease Control Priorities in Developing
Countries > Gender Differentials in Health
Sex Differences in
Measles Mortality
Following section is
taken from Childhood Cancer Epidemiology:
Sex Differential
in Childhood Cancer
The gender effect in incidence of childhood
cancer is well-established and consistent worldwide (Ashley,
1969; Greenberg
& Shuster, 1985; Linet
& Devesa, 1991; Little J, 1999; Pearce
& Parker, 2001; Desandes,
2004). Among newly
diagnosed childhood cancers, the standardised (with European reference)
incidence rates for all participating registries in Europe yields a boys to girls ratio for adjusted rates is on
average 1.22. The incidence of ALL among
children younger than 15 years of age is consistently higher among males
(approximately 20%) relative to females. For the 15-19 year olds,
however, the male preponderance was greater, with males having a 2-fold higher
ALL incidence than females (SEER Report, see also Average
Annual Age-Specific Incidence Rates per Million, SEER, 19931997). The male predominance is a
feature of cancer incidence in all ages (Cartwright,
2002; Boyle
& Ferlay, 2005).
Although
the male-to-female (M:F) age-adjusted incidence is >1.0 for all
types of leukaemias and lymphomas, the ratio is highest (M:F: 3.0)
for non-Hodgkin lymphoma, similar for ALL and HD (both M:F: 1.3),
and lowest for acute myeloid leukaemia (M:F: 1.1; Table
1 in Linet,
2003). Burkitt lymphoma is one of the childhood (and adult) tumours
with the highest M:F ratio (Boerma, 2004). The M:F
ratio also varies among the subtypes of central nervous system
tumours, with the highest ratio apparent for ependymomas (M:F: 2.0)
and primitive neuroectodermal tumours (M:F: 1.7), but there is
little difference between male and female age-adjusted incidences
for astrocytomas and other gliomas (Table
2 in Linet,
2003). Boys
and girls have a similar incidence of retinoblastoma and Wilms’ tumour. Only
for extragonadal, non-intracranial germ cell tumours, malignant melanoma and
some carcinomas, notably those of the adrenal cortex and thyroid (Inskip,
2001), including radioactive iodine-induced form (Cardis,
2005), and alveolar soft
part sarcoma (Bu,
2005), there is an excess among girls (UK
National Childhood Cancer Statistics, 2004). For M-to-F ratio in each
childhood cancer, see Table 13.1 in UK
National Childhood Cancer Statistics (see also Table
4 in Linet,
2003). Reasons are unknown for the male predominance in incidence of
non-Hodgkin lymphoma and ependymomas; the higher incidences among
young females for thyroid cancer and malignant melanoma; and the
lack of gender-related differences in incidences of acute myeloid
leukaemia, astrocytomas, and other gliomas, but etiologic leads to
consider include exposures that differ
by gender, effects of hormonal influences, and gender-related
genetic differences (Linet,
2003). The gender effect is not only seen in incidence of childhood ALL but
also in prognosis; males having more cancers and worse prognosis (Sather,
1981; Gustafsson
& Kreuger, 1983; Lanning,
1992; Chessells,
1995; Shuster,
1998; Pui,
1999; Eden,
2000). Furthermore, second malignancies also occur more frequently in males
(Devarahally,
2003).
The susceptibility by sex at different ages is a phenomenon rarely addressed in the analyses of epidemiological studies, yet the risks for males of certain ages can be between two- and fivefold greater than females, which is in need of further investigation (Cartwright, 2002). As one possible mechanism of the male-female differential in childhood cancers, in particular Hodgkin's disease, greater frequency of an asymptomatic carrier state in this sex has been suggested but not investigated (Vianna & Polan, 1978).
Following observations have been made in relation to gender effect in childhood leukaemia / cancers and may be relevant in the explanation of this phenomenon:
* The male excess in childhood ALL is consistent worldwide and the populations with a lower M:F ratio tend to have low total leukaemia and ALL incidence (Linet & Devesa, 1991)
* In
leukaemia, prognosis is worse in boys compared to boys (Sather,
1981; Gustafsson
& Kreuger, 1983; Lanning,
1992; Chessells,
1995; Pui,
1999; Eden,
2000)
* The risk for second primary malignancies
is higher in males following childhood CNS tumours (Devarahally,
2003)
* In twin studies, there is a deficit of twin boys with cancer (Hewitt, 1966; Hewitt, 1970, Inskip, 1991; Rodvall, 1992)
* Male survivors of childhood cancer have a lower proportion of livebirth and a reversed male-to-female ratio in their offspring suggesting a male deficit among their children (Green, 2003)
*
Advanced maternal age and risk association is seen only in boys in two studies
(Fasal,
1971; Reynolds,
2002)
* Paternal exposure to chemicals (dibromochloropropane and dioxin) (Potashnik, 1984; Mocarelli, 2000; Jonbloet, 2002) decreases the sex (M/F) ratio in the offspring although the opposite effect has also been reported (Karmaus, 2002). Parental smoking during the periconceptional period also decreases male-to-female ration at birth (see a commentary at a CCC newsletter)
* In the original Oxford Study of Childhood Cancer (Hewitt, 1966), out of 14 survivors of threatened abortions who developed a malignancy in the first six months, only one was a male
* In the original Oxford Study of Childhood Cancer (Hewitt, 1966), unaffected sibs of familial cases of childhood leukaemia have a low male-to-female ratio (0.71)
* Male children of untreated diabetic or prediabetic mothers have a higher risk of being stillborn (Gellis & Hsia, 1950)
* Seasonality in childhood HD is restricted to
males only in one study (Fraumeni
& Li, 1969). Li & Fraumeni likened this observation to
male-specific susceptibility to adenovirus-induced cancers in hamsters (Yohn,
1973)
* If
infections have anything to do with childhood cancers, boys are more vulnerable
to childhood infections than girls (Washburn,
1965; Schlegel,
1969; Purtilo,
1979; Schmitz,
1983; Green,
1992; Read,
1997). The most striking example is of course EBV infections in X-linked
lymphoproliferative disease (Seemayer,
1993).
* The association of childhood leukaemia
with cleft lip and palate is based on three male cases (Zack,
1991)
* Association of childhood leukaemia with
high birthweight is more pronounced in a subgroup of female children of older
mothers with a high socioeconomic status (Fasal,
1971; Paltiel,
2004). This has been shown in twin females too (Jackson,
1969)
* Females have a greater risk of developing thyroid cancer than males following postnatal irradiation (Hempelmann, 1975; Inskip, 2001; Cardis, 2005)
* Familial aggregation of NHL is male-specific (Chatterjee, 2004)
* Genetic susceptibility studies have shown gender-specific associations:
- Blood groups ABO frequencies differ between male and female patients in leukaemia (Jackson, 1999)
- Postnatal diagnostic irradiation and DNA repair genes (Infante-Rivard, 2000)
- DNA repair gene XRCC1 (Joseph, 2005)
- Xenobiotic enzyme polymorphisms (Krajinovic, 1999)
- HLA and HFE associations (Dorak, 1999a & 1999b; 2005)
* Homozygosity for HLA-DR haplotypes (one of which associated with risk for childhood ALL in males) shows a deficit in newborn males (Dorak, 2002)
* A finding that may be relevant in gender effect is that newborn boys have a higher homozygote TT frequency for MTHFR 677C>T SNP (Rozen, 1999). However, the 677T allele is protective for childhood ALL (Wiemels, 2001; Robien & Ulrich, 2003)
* Penetrance of mutations in DNA mismatch repair genes MLH1/MSH2 is significantly higher in males (approximately 80%) than in females (40%) (Mitchell, 2002). DNA mismatch repair gene mutations usually cause adult colon cancer in heterozygous form but a variety of childhood cancer in homozygous forms (Lucci-Cordisco, 2003)
* In animal studies, males are more susceptible to oxidative damage (Ma, 1998). In humans, gender effect in oxidative damage has also been suggested (Proteggente, 2002)
* In animal studies, sensitivity to mutagenic carcinogens and the risk of radiation carcinogenesis are greater in males (Hattis, 2004)
* An in vitro study showed a higher radiosensitivity of lymphocytes from males regardless of age and ethnicity (Wang, 2000)
* Maternal serum ferritin levels are at 36 weeks of gestation correlate with umbilical cord serum ferritin of male but female infants (Tamura, 1999). This may be relevant in the male-specificity of HFE-C282Y association in childhood ALL (Dorak, 1999)
References relevant to gender effect in cancer:
Ahmed, S. A. and Talal, N. (1990) Sex hormones and the
immune system--Part 2. Animal data Baillieres
Clin Rheumatol, 4, 1 13-31.
Anderson, G.
D. (2002) Sex differences in drug metabolism: cytochrome P-450 and uridine
diphosphate glucuronosyltransferase J
Gend Specif Med, 5, 1 25-33.
Ansar Ahmed,
S., Penhale, W. J. and Talal, N. (1985) Sex hormones, immune responses, and
autoimmune diseases. Mechanisms of sex hormone action Am J Pathol, 121, 3 531-51.
Asham, E. H.,
Loizidou, M. and Taylor, I. (1998) Endothelin-1 and tumour development Eur J Surg Oncol, 24, 1 57-60.
Ashley, D. J.
(1969) A male-female differential in tumour incidence British Journal of Cancer, 23, 1 21-25.
Bagnato, A.
and Spinella, F. (2003) Emerging role of endothelin-1 in tumor angiogenesis Trends Endocrinol Metab, 14, 1 44-50.
Barna, M.,
Komatsu, T., Bi, Z. and Reiss, C. S. (1996) Sex differences in susceptibility
to viral infection of the central nervous system Journal of Neuroimmunology, 67, 1 31-39.
Biggar, R. J.,
Pandey, J. P., Henle, W., Nkrumah, F. K. and Levine, P. H. (1984) Humoral
immune response to Epstein-Barr virus antigens and immunoglobulin allotypes in
African Burkitt lymphoma patients Int J
Cancer, 33, 5 577-80.
Bihl, F.,
Brahic, M. and Bureau, J. F. (1999) Two loci, Tmevp2 and Tmevp3, located on the
telomeric region of chromosome 10, control the persistence of Theiler's virus
in the central nervous system of mice Genetics,
152, 1 385-92.
Brown, C. J.
and Greally, J. M. (2003) A stain upon the silence: genes escaping X
inactivation Trends Genet, 19, 8
432-8.
Bruland, T.,
Dai, H. Y., Lavik, L. A., Kristiansen, L. I. and Dalen, A. (2001)
Gender-related differences in susceptibility, early virus dissemination and
immunosuppression in mice infected with Friend murine leukaemia virus variant
FIS-2 J Gen Virol, 82, Pt 8 1821-7.
Bruland, T.,
Lavik, L. A., Dai, H. Y. and Dalen, A. (2003) A glucocorticoid response element
in the LTR U3 region of Friend murine leukaemia virus variant FIS-2 enhances
virus production in vitro and is a major determinant for sex differences in
susceptibility to FIS-2 infection in vivo J
Gen Virol, 84, Pt 4 907-16.
Butterfield,
R. J., Roper, R. J., Rhein, D. M., Melvold, R. W., Haynes, L., Ma, R. Z.,
Doerge, R. W. and Teuscher, C. (2003) Sex-specific quantitative trait loci
govern susceptibility to Theiler's murine encephalomyelitis virus-induced
demyelination Genetics, 163, 3
1041-6.
Butterworth,
M., McClellan, B. and Allansmith, M. (1967) Influence of sex in immunoglobulin
levels Nature, 214, 94 1224-1225.
Cannon, J. G.
and St Pierre, B. A. (1997) Gender differences in host defense mechanisms J Psychiatr Res, 31, 1 99-113.
Cartwright, R.
A., Gurney, K. A. and Moorman, A. V. (2002) Sex ratios and the risks of
haematological malignancies Br J
Haematol, 118, 4 1071-7.
Clutton-Brock,
T. H., Albon, S. D. and Guinness, F. E. (1985) Parental investment and sex differences
in juvenile mortality in birds and mammals Nature,
313, 5998 133-133.
Collins, W.
M., Dunlop, W. R., Zsigray, R. M., Briles, R. W. and Fite, R. W. (1986)
Metastasis of Rous sarcoma tumors in chickens is influenced by the major
histocompatibility (B) complex and sex Poultry
Science, 65, 9 1642-1648.
Conley, M. E.
(2000) Genetics of primary immunodeficiency diseases Reviews in Immunogenetics, 2, 231-242.
Craig, I. W.,
Harper, E. and Loat, C. S. (2004) The genetic basis for sex differences in
human behaviour: role of the sex chromosomes Ann Hum Genet, 68, Pt 3 269-84.
Cutolo, M.,
Seriolo, B., Villaggio, B., Pizzorni, C., Craviotto, C. and Sulli, A. (2002)
Androgens and estrogens modulate the immune and inflammatory responses in
rheumatoid arthritis Ann N Y Acad Sci,
966, 131-42.
Da Silva, J.
A. (1999) Sex hormones and glucocorticoids: interactions with the immune system
Ann N Y Acad Sci, 876, 102-17;
discussion 117-8.
Darbre, P.,
Page, M. and King, R. J. (1986) Androgen regulation by the long terminal repeat
of mouse mammary tumor virus Mol Cell
Biol, 6, 8 2847-54.
Deguchi, J.,
Miyamoto, M. and Okada, S. (1995) Sex hormone-dependent renal cell
carcinogenesis induced by ferric nitrilotriacetate in Wistar rats Jpn J Cancer Res, 86, 11 1068-71.
Devarahally,
S. R., Severson, R. K., Chuba, P., Thomas, R., Bhambhani, K. and Hamre, M. R.
(2003) Second malignant neoplasms after primary central nervous system
malignancies of childhood and adolescence Pediatr
Hematol Oncol, 20, 8 617-25.
Dorak, M. T.
and Burnett, A. K. (1992) Major histocompatibility complex, t-complex, and
leukemia [Review] Cancer Causes &
Control, 3, 3 273-282.
Dorak, M. T.,
Lawson, T., Machulla, H. K., Mills, K. I. and Burnett, A. K. (2002a) Increased
heterozygosity for MHC class II lineages in newborn males Genes Immun, 3, 5 263-9.
Dorak, M. T.,
Lawson, T., Machulla, H. K. G., Darke, C., Mills, K. I. and Burnett, A. K.
(1999a) Unravelling an HLA-DR association in childhood acute lymphoblastic
leukemia Blood, 94, 2 694-700.
Dorak, M. T.,
Mills, K. I., Gaffney, D., Wilson, D. W., Galbraith, I., Henderson, N. and
Burnett, A. K. (1994) Homozygous MHC genotypes and longevity Hum Hered, 44, 5 271-8.
Dorak, M. T.,
Oguz, F. S., Yalman, N., Diler, A. S., Kalayoglu, S., Anak, S., Sargin, D. and Carin,
M. (2002b) A male-specific increase in the HLA-DRB4 (DR53) frequency in
high-risk and relapsed childhood ALL Leuk
Res, 26, 7 651-6.
Dorak, M. T.,
Shao, W., Mills, K. I. and Burnett, A. K. (2003) Endothelin-1 gene shows a
gender-specific association with childhood acute lymphoblastic leukemia
[Abstract] Blood, The 45th Annual
Meeting of the American Society for Hematology (ASH). San Diego, CA.
Dorak, M. T.,
Sproul, A. M., Gibson, B. E., Burnett, A. K. and Worwood, M. (1999b) The C282Y
mutation of HFE is another
male-specific risk factor for childhood ALL Blood,
94, 11 3957-3958.
Dorak, M. T.,
Sproul, A. M., Machulla, H. K., Burnett, A. K. and Gibson, B. E. (2000)
Confirmation of the male-specific HLA-DRB4*01 association in childhood
leukaemia [Abstract] Eur J Hum
Immunogenet, 27, 4 262-262.
Dresler, C.
M., Fratelli, C., Babb, J., Everley, L., Evans, A. A. and Clapper, M. L. (2000)
Gender differences in genetic susceptibility for lung cancer Lung Cancer, 30, 3 153-60.
Dunn, G. P.,
Old, L. J. and Schreiber, R. D. (2004) The immunobiology of cancer
immunosurveillance and immunoediting Immunity,
21, 2 137-48.
Eden, O. B.,
Harrison, G., Richards, S., Lilleyman, J. S., Bailey, C. C., Chessells, J. M.,
Hann, I. M., Hill, F. G. and Gibson, B. E. (2000) Long-term follow-up of the
United Kingdom Medical Research Council protocols for childhood acute
lymphoblastic leukaemia, 1980-1997. Medical Research Council Childhood
Leukaemia Working Party Leukemia, 14,
12 2307-2320.
Escobar, V.,
Corey, L. A., Bixler, D., Nance, W. E. and Biegel, A. (1979) The human
X-chromosome and the levels of serum immunoglobulin M Clin Genet, 15, 3 221-7.
Evans, J. S.,
Nims, T., Cooley, J., Bradley, W., Jagodzinski, L., Zhou, S., Melcher, G. P.,
Burke, D. S. and Vahey, M. (1997) Serum levels of virus burden in early-stage
human immunodeficiency virus type 1 disease in women J Infect Dis, 175, 4 795-800.
Fasal, E.,
Jackson, E. W. and Klauber, M. R. (1971) Birth characteristics and leukemia in
childhood J Natl Cancer Inst, 47, 3
501-9.
Fox, H. S.,
Bond, B. L. and Parslow, T. G. (1991) Estrogen regulates the IFN-gamma promoter
J Immunol, 146, 12 4362-7.
Frank, S. A.
and Hurst, L. D. (1996) Mitochondria and male disease Nature, 383, 6597 224.
Fraumeni, J.
F., Jr. and Li, F. P. (1969) Hodgkin's disease in childhood: an epidemiologic
study J Natl Cancer Inst, 42, 4
681-91.
Gaillard, R.
C. and Spinedi, E. (1998) Sex- and stress-steroids interactions and the immune
system: evidence for a neuroendocrine-immunological sexual dimorphism Domest Anim Endocrinol, 15, 5 345-52.
Gandhi, M.,
Bacchetti, P., Miotti, P., Quinn, T. C., Veronese, F. and R.M., G. (2002) Does
patient sex affect human immunodeficiency virus levels? Clin Infect Dis, 35, 3 313-322.
Gellis, S. S. and
Hsia, D. Y. (1959) The infant of diabetic mother AMA J Dis Child, 97, 1 1-41.
Green, M. S.
(1992) The male predominance in the incidence of infectious diseases in
children: a postulated explanation for disparities in the literature Int J Epidemiol, 21, 2 381-6.
Grossman, C.
(1989) Possible underlying mechanisms of sexual dimorphism in the immune
response, fact and hypothesis Journal of
Steroid Biochemistry, 34, 1-6 241-251.
Grossman, C.
J. (1984) Regulation of the immune system by sex steroids Endocr Rev, 5, 3 435-455.
Grossman, C.
J., Roselle, G. A. and Mendenhall, C. L. (1991) Sex steroid regulation of
autoimmunity J Steroid Biochem Mol Biol,
40, 4-6 649-59.
Gurney, J. G.,
Severson, R. K., Davis, S. and Robison, L. L. (1995) Incidence of cancer in
children in the United States. Sex-, race-, and 1-year age-specific rates by
histologic type Cancer, 75, 8
2186-95.
Gustafsson, G.
and Kreuger, A. (1983) Sex and other prognostic factors in acute lymphoblastic
leukemia in childhood Am J Pediatr
Hematol Oncol, 5, 3 243-50.
Han, X.,
Lundberg, P., Tanamachi, B., Openshaw, H., Longmate, J. and Cantin, E. (2001)
Gender influences herpes simplex virus type 1 infection in normal and gamma
interferon-mutant mice J Virol, 75, 6
3048-52.
Harris, R. Z.,
Benet, L. Z. and Schwartz, J. B. (1995) Gender effects in pharmacokinetics and
pharmacodynamics Drugs, 50, 2 222-39.
Hassold, T.,
Quillen, S. T. and Yamane, J. A. (1983) Sex ratio in spontaneous abortions Ann Hum Genet, 47, Part 1 39-47.
Henderson, C.
J., Scott, A. R., Yang, C. S. and Wolf, C. R. (1990) Testosterone-mediated
regulation of mouse renal cytochrome P-450 isoenzymes Biochemical Journal, 266, 3 675-681.
Hewitt, D.,
Lashof, J. C. and Stewart, A. M. (1966) Childhood cancer in twins Cancer, 19, 2 157-61.
Hewitt, D. and
Stewart, A. (1970) Relevance of twin data to intrauterine selection: special
case of childhood cancer Acta Genet Med
Gemellol (Roma), 19, 1 83-6.
Huber, S. A.
and Pfaeffle, B. (1994) Differential Th1 and Th2 cell responses in male and
female BALB/c mice infected with coxsackievirus group B type 3 J Virol, 68, 8 5126-32.
Infante-Rivard,
C., Mathonnet, G. and Sinnett, D. (2000) Risk of childhood leukemia associated
with diagnostic irradiation and polymorphisms in DNA repair genes Environ Health Perspect, 108, 6 495-8.
Inskip, P. D.,
Harvey, E. B., Boice, J. D., Jr., Stone, B. J., Matanoski, G., Flannery, J. T.
and Fraumeni, J. F., Jr. (1991) Incidence of childhood cancer in twins Cancer Causes & Control, 2, 315-324.
Ivanova, R.,
Henon, N., Lepage, V., Charron, D., Vicaut, E. and Schachter, F. (1998) HLA-DR
alleles display sex-dependent effects on survival and discriminate between
individual and familial longevity Hum Mol
Genet, 7, 2 187-94.
Jackson, E.
W., Norris, F. D. and Klauber, M. R. (1969) Childhood leukemia in
California-born twins Cancer, 23, 4
913-9.
Jackson, N.,
Menon, B. S., Zarina, W., Zawawi, N. and Naing, N. N. (1999) Why is acute
leukemia more common in males? A possible sex-determined risk linked to the ABO
blood group genes Ann Hematol, 78, 5
233-6.
Juan, S. H.,
Chen, J. J., Chen, C. H., Lin, H., Cheng, C. F., Liu, J. C., Hsieh, M. H.,
Chen, Y. L., Chao, H. H., Chen, T. H., Chan, P. and Cheng, T. H. (2004)
17beta-estradiol inhibits cyclic strain-induced endothelin-1 gene expression
within vascular endothelial cells Am J
Physiol Heart Circ Physiol, 287, 3 H1254-61.
Kanda, N. and
Tamaki, K. (1999) Estrogen enhances immunoglobulin production by human PBMCs J Allergy Clin Immunol, 103, 2 Pt 1
282-8.
Kappel, C. A.,
Melvold, R. W. and Kim, B. S. (1990) Influence of sex on susceptibility in the
Theiler's murine encephalomyelitis virus model for multiple sclerosis J Neuroimmunol, 29, 1-3 15-9.
Kasai, S. and
Tomita, T. (2003) Male specific expression of a cytochrome P450 (Cyp312a1) in
Drosophila melanogaster Biochem Biophys
Res Commun, 300, 4 894-900.
Kaye, S. A.,
Robison, L. L., Smithson, W. A., Gunderson, P., King, F. L. and Neglia, J. P.
(1991) Maternal reproductive history and birth characteristics in childhood
acute lymphoblastic leukemia Cancer,
68, 6 1351-1355.
Kellokumpu-Lehtinen,
P. and Pelliniemi, L. J. (1984) Sex ratio in human conceptuses Obstet Gynecol, 64, 2 220-222.
Kinlen, L.
(2004) Infections and immune factors in cancer: the role of epidemiology Oncogene, 23, 38 6341-8.
Klein, S. L. (2000)
The effects of hormones on sex differences in infection: from genes to behavior
Neurosci Biobehav Rev, 24, 6 627-38.
Kraemer, S.
(2000) The fragile male BMJ, 321,
7276 1609-12.
Krajinovic, M.,
Labuda, D., Richer, C., Karimi, S. and Sinnett, D. (1999) Susceptibility to
childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and
GSTT1 genetic polymorphisms Blood,
93, 5 1496-1501.
Lanning, M.,
Garwicz, S., Hertz, H., Jonmundsson, G., Kreuger, A., Lie, S. O., Moe, P. J.,
Salmi, T. T., Schroder, H., Siimes, M. A. and et al. (1992) Superior treatment
results in females with high-risk acute lymphoblastic leukemia in childhood Acta Paediatr, 81, 1 66-8.
Ma, Y.,
Kawabata, T., Hamazaki, S., Ogino, T. and Okada, S. (1998) Sex differences in
oxidative damage in ddY mouse kidney treated with a renal carcinogen, iron
nitrilotriacetate Carcinogenesis, 19,
11 1983-8.
Martin, J. T.
(2000) Sexual dimorphism in immune function: the role of prenatal exposure to
androgens and estrogens Eur J Pharmacol,
405, 1-3 251-261.
Martin, R. W.,
3rd, Hood, A. F. and Farmer, E. R. (1993) Kaposi sarcoma Medicine (Baltimore), 72, 4 245-61.
McMillen, M.
M. (1979) Differential mortality by sex in fetal and neonatal deaths Science, 204, 4388 89-91.
Moehler, T.
M., Ho, A. D., Goldschmidt, H. and Barlogie, B. (2003) Angiogenesis in
hematologic malignancies Crit Rev Oncol
Hematol, 45, 3 227-44.
Moller, A. P.,
Sorci, G. and Erritzoe, J. (1998) Sexual dimorphism in immune defense American Naturalist, 152, 4 605-619.
Mollerup, S.,
Ryberg, D., Hewer, A., Phillips, D. H. and Haugen, A. (1999) Sex differences in
lung CYP1A1 expression and DNA adduct levels among lung cancer patients Cancer Res, 59, 14 3317-20.
Mozes, E. and
Fuchs, S. (1974) Linkage between immune response potential to DNA and X
chromosome Nature, 249, 453 167-8.
Mugford, C. A.
and Kedderis, G. L. (1998) Sex-dependent metabolism of xenobiotics Drug Metab Rev, 30, 3 441-98.
Nagy, P.,
Jako, J., Kiss, A., Tamas, E., Telek, B. and Rak, K. (1981) Sex-linked
difference in blood-group distribution among patients suffering from acute
leukaemias Br J Haematol, 48, 3
507-8.
Nowinski, R.
C., Brown, M., Doyle, T. and Prentice, R. L. (1979) Genetic and viral factors
influencing the development of spontaneous leukemia in AKR mice Virology, 96, 186-204.
Olsen, N. J.
and Kovacs, W. J. (1996) Gonadal steroids and immunity Endocr Rev, 17, 4 369-84.
Otten, A. D.,
Sanders, M. M. and McKnight, G. S. (1988) The MMTV LTR promoter is induced by
progesterone and dihydrotestosterone but not by estrogen Mol Endocrinol, 2, 2 143-7.
Paltiel, O.,
Harlap, S., Deutsch, L., Knaanie, A., Massalha, S., Tiram, E., Barchana, M. and
Friedlander, Y. (2004) Birth weight and other risk factors for acute leukemia
in the Jerusalem Perinatal Study cohort Cancer
Epidemiol Biomarkers Prev, 13, 6 1057-64.
Pearce, M. S.
and Parker, L. (2001) Childhood cancer registrations in the developing world:
still more boys than girls Int J Cancer,
91, 3 402-6.
Polderman, K.
H., Stehouwer, C. D., van Kamp, G. J., Dekker, G. A., Verheugt, F. W. and
Gooren, L. J. (1993) Influence of sex hormones on plasma endothelin levels Ann Intern Med, 118, 6 429-32.
Proteggente,
A. R., England, T. G., Rehman, A., Rice-Evans, C. A. and Halliwell, B. (2002)
Gender differences in steady-state levels of oxidative damage to DNA in healthy
individuals Free Radic Res, 36, 2
157-62.
Pui, C. H.,
Boyett, J. M., Relling, M. V., Harrison, P. L., Rivera, G. K., Behm, F. G.,
Sandlund, J. T., Ribeiro, R. C., Rubnitz, J. E., Gajjar, A. and Evans, W. E.
(1999) Sex differences in prognosis for children with acute lymphoblastic
leukemia J Clin Oncol, 17, 3 818-24.
Purtilo, D. T.
and Sullivan, J. L. (1979) Immunological bases for superior survival of females
Am J Dis Child, 133, 12 1251-1253.
Read, J. S.,
Troendle, J. F. and Klebanoff, M. A. (1997) Infectious disease mortality among
infants in the United States, 1983 through 1987 Am J Public Health, 87, 2 192-8.
Rechavi, G.,
Ramot, B. and Ben-Bassat, I. (1992) The role of infection in childhood
leukemia: what can be learned from the male predominance? Acta Haematol, 88, 2-3 58-60.
Robien, K. and
Ulrich, C. M. (2003) 5,10-Methylenetetrahydrofolate reductase polymorphisms and
leukemia risk: a HuGE minireview Am J
Epidemiol, 157, 7 571-82.
Rodvall, Y.,
Hrubec, Z., Pershagen, G., Ahlbom, A., Bjurman, A. and Boice, J. D., Jr. (1992)
Childhood cancer among Swedish twins Cancer
Causes Control, 3, 6 527-32.
Rolff, J.
(2002) Bateman's principle and immunity Proc
R Soc Lond B Biol Sci, 269, 1493 867-72.
Rozen, R.,
Fraser, F. C. and Shaw, G. (1999) Decreased proportion of female newborn
infants homozygous for the 677 C-->T mutation in methylenetetrahydrofolate
reductase Am J Med Genet, 83, 2
142-3.
Ryberg, D.,
Hewer, A., Phillips, D. H. and Haugen, A. (1994) Different susceptibility to
smoking-induced DNA damage among male and female lung cancer patients Cancer Research, 54, 22 5801-5803.
Sarvetnick, N.
and Fox, H. S. (1990) Interferon-gamma and the sexual dimorphism of autoimmunity
Mol Biol Med, 7, 4 323-31.
Sather, H.,
Miller, D., Nesbit, M., Heyn, R. and Hammond, D. (1981) Differences in
prognosis for boys and girls with acute lymphoblastic leukaemia Lancet, 1, 8223 739-743.
Schlegel, R.
J. and Bellanti, J. A. (1969) Increased susceptibility of males to infection Lancet, 2, 7625 826-7.
Schmitz, H.,
Wigand, R. and Heinrich, W. (1983) Worldwide epidemiology of human adenovirus
infections Am J Epidemiol, 117, 4
455-66.
Schuurs, A. H.
and Verheul, H. A. (1990) Effects of gender and sex steroids on the immune
response J Steroid Biochem, 35, 2
157-72.
Shelat, S. G.,
Aird, F. and Redei, E. (1997) Exposure to dehydroepiandrosterone in utero
affects T-cell function in males only Neuroimmunomodulation,
4, 3 154-62.
Shields, P. G.
(2002) Molecular epidemiology of smoking and lung cancer Oncogene, 21, 45 6870-6.
Singhal, S.
S., Saxena, M., Awasthi, S., Ahmad, H., Sharma, R. and Awasthi, Y. C. (1992)
Gender related differences in the expression and characteristics of glutathione
S-transferases of human colon Biochim
Biophys Acta, 1171, 1 19-26.
Sinnett, D.,
Krajinovic, M. and Labuda, D. (2000) Genetic susceptibility to childhood acute
lymphoblastic leukemia Leuk Lymphoma,
38, 5-6 447-62.
Skuse, D. H.
(2000) Imprinting, the X-chromosome, and the male brain: explaining sex
differences in the liability to autism Pediatr
Res, 47, 1 9-16.
Sordello, S.,
Bertrand, N. and Plouet, J. (1998) Vascular endothelial growth factor is
up-regulated in vitro and in vivo by androgens Biochem Biophys Res Commun, 251, 1 287-90.
Steiner, H.,
Polliack, A., Kimchi-Sarfaty, C., Libster, D., Fibach, E. and Rund, D. (1998)
Differences in rhodamine-123 efflux in B-type chronic lymphocytic leukemia
suggest possible gender and stage variations in drug-resistance gene activity Ann Hematol, 76, 5 189-94.
Sterling, T.
R., Lyles, C. M., Vlahov, D., Astemborski, J., Margolick, J. B. and Quinn, T.
C. (1999) Sex differences in longitudinal human immunodeficiency virus type 1
RNA levels among seroconverters J Infect
Dis, 180, 3 666-72.
Stevenson, D.
K., Verter, J., Fanaroff, A. A., Oh, W., Ehrenkranz, R. A., Shankaran, S.,
Donovan, E. F., Wright, L. L., Lemons, J. A., Tyson, J. E., Korones, S. B.,
Bauer, C. R., Stoll, B. J. and Papile, L. A. (2000) Sex differences in outcomes
of very low birthweight infants: the newborn male disadvantage Arch Dis Child Fetal Neonatal Ed, 83, 3
F182-5.
Taylor, G. M.,
Dearden, S., Payne, N., Ayres, M., Gokhale, D. A., Birch, J. M., Blair, V.,
Stevens, R. F., Will, A. M. and Eden, O. B. (1998) Evidence that an
HLA-DQA1-DQB1 haplotype influences susceptibility to childhood common acute
lymphoblastic leukaemia in boys provides further support for an
infection-related aetiology Br J Cancer,
78, 5 561-565.
Vatten, L. J.
and Skjaerven, R. (2004) Offspring sex and pregnancy outcome by length of
gestation Early Hum Dev, 76, 1 47-54.
Verthelyi, D.
(2001) Sex hormones as immunomodulators in health and disease Int Immunopharmacol, 1, 6 983-93.
Vianna, N. J.
and Polan, A. K. (1978) Immunity in Hodgkin's disease: importance of age at
exposure Ann Intern Med, 89, 4 550-6.
Waldron, I. (1983) Sex
differences in human mortality: the role of genetic factors. Soc Sci Med, 17, 321-33.
Washburn, T.
C., Medearis, D. N., Jr. and Childs, B. (1965) Sex differences in susceptibility
to infections Pediatrics, 35, 57-64.
Wei, Q.,
Cheng, L., Amos, C. I., Wang, L. E., Guo, Z., Hong, W. K. and Spitz, M. R.
(2000) Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a
molecular epidemiologic study J Natl
Cancer Inst, 92, 21 1764-72.
Wells, J. C.
(2000) Natural selection and sex differences in morbidity and mortality in
early life J Theor Biol, 202, 1
65-76.
Whitacre, C.
C., Reingold, S. C., O'Looney, P. A. and Task Force on Gender, M. S. a. A.
(1999) A gender gap in autoimmunity Science,
283, 1277-1278.
Wiemels, J.
L., Smith, R. N., Taylor, G. M., Eden, O. B., Alexander, F. E. and Greaves, M.
F. (2001) Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of
molecularly defined subtypes of childhood acute leukemia Proc Natl Acad Sci U S A, 98, 7 4004-9.
Yeazel, M. W.,
Buckley, J. D., Woods, W. G., Ruccione, K. and Robison, L. L. (1995) History of
maternal fetal loss and increased risk of childhood acute leukemia at an early
age. A report from the Childrens Cancer Group Cancer, 75, 7 1718-1727.
Yohn, D. S. (1973) Sex-related resistance in
hamsters to adenovirus oncogenesis Prog
Exp Tumor Res, 18, 138-65.
Yohn, D. S., Funk, C. A.,
Kalnins, V. I. and Grace, J. T., Jr. (1965) Sex-related resistance in hamsters
to adenovirus-12 oncogenesis. I. Influence of thymectomy at three weeks of age J Natl Cancer Inst, 35, 4 617-24.
Yohn, D. S., Funk, C. A.
and Grace, J. T., Jr. (1967) Sex-related resistance in hamsters to
adenovirus-12 oncogenesis. II. Influence of virus dose J Virol, 1, 6 1186-92.
Yohn, D. S., Funk, C. A.
and Grace, J. T., Jr. (1968) Sex-related resistance in hamsters to
adenovirus-12 oncogenesis. III. Influence of immunologic impairment by
thymectomy or cortisone J Immunol, 100,
4 771-80.
Yohn, D. S. and Funk, C. A.
(1969) Sex-related resistance in hamsters to adenovirus-12 oncogenesis. IV.
Gonadal hormone influences J Natl Cancer
Inst, 43, 1 133-9.
Childhood Cancer Epidemiology Childhood Leukaemia Epidemiology Genetic Epidemiology
M.Tevfik Dorak, B.A. (Hons), M.D., Ph.D.
30 May 2006
HLA MHC Genetics
Genetic Epidemiology Evolution Biostatistics Homepage